
Eidgenössische
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Algorithms & Data Structures Exercise sheet 12 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 19 December 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 12.1 MST practice.

Consider the following graph
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a) Compute the minimum spanning tree (MST) using Boruvka’s algorithm. For each step, provide the
set of edges that are added to the MST.

b) Provide the order in which Kruskal’s algorithm adds the edges to the MST.

c) Provide the order in which Prim’s algorithm (starting at vertex d) adds the edges to the MST.

Exercise 12.2 Maximum Spanning Trees and Trucking (2 points).

We start with a few questions about maximum spanning trees.

(a) How would you �nd the maximum spanning tree in a weighted graph G? Brie�y explain an
algorithm with runtime O((|V |+ |E|) log |V |).

(b) Given a weighted graph G = (V,E) with weights w : E → R, let G≥x = (V, {e ∈ E | w(e) ≥ x})
be the subgraph where we only preserve edges of weight x or more. Prove that for every s ∈ V, t ∈
V, x ∈ R, if s and t are connected in G≥x then they will also be connected in T≥x, where T is the
maximum spanning tree of G.



Hint: Use Kruskal’s algorithm as inspiration for the proof.
Hint: If it helps, you can assume all edges have distinct weight and only prove the claim for that case.

Problem: You are starting a truck company in a graph G = (V,E) with V = {1, 2, . . . , n}. Your
headquarters are in vertex 1 and your goal is to deliver the maximum amount of cargo to a destination
t ∈ V in a single trip. Due to local laws, each road e ∈ E has a maximum amount of cargo your truck
can be loaded with while traversing e. Find the maximum amount of cargo you can deliver for each
t ∈ V with an algorithm that runs in O((|V |+ |E|) log |V |) time.

Example:
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5 410 Output:
Max cargo to 1 is ∞
Max cargo to 2 is 10

Max cargo to 3 is 8

Max cargo to 4 is 8

Explanation:
�e best path from the headquar-
ters to 4 is 1→ 2→ 3→ 4, and
the maximum cargo the truck
can carry is min(10, 8, 10) = 8.

(c) Prove that for every t ∈ V , the optimal route is to take the unique path in the maximum spanning
tree of G.

Hint: Suppose that the largest amount of cargo we can carry from 1 to t in G (i.e., the correct result)
is OPT and let ALG be the largest amount of cargo from 1 to t in the maximum spanning tree. We
need to prove two directions: OPT ≤ ALG and OPT ≥ ALG.
Hint: One direction holds trivially as any spanning tree is a subgraph. For the other direction, use part
(b).

(d) Write the pseudocode of the algorithm that computes the output for all t ∈ V and runs in O((|V |+
|E|) log |V |). You can assume that you have access to a function that computes the maximum
spanning tree from G and outputs it in any standard format. Brie�y explain why the runtime
bound holds.

Exercise 12.3 Counting Minimum Spanning Trees With Identical Edge Weights (1 point).

Let G = (V,E) be an undirected, weighted graph with weight function w.

It can be proven that, if G is connected and all its edge weights are pairwise distinct1, then its Minimum
Spanning Tree is unique. You can use this fact without proof in the rest of this exercise.

For k ≥ 0, we say that G is k-redundant if k of G’s edge weights are non-unique, e.g.

|{e ∈ E | ∃e′ ∈ E. e 6= e′ ∧ w(e) = w(e′)}| = k.

In particular, if G’s edge weights are all distinct, then G is 0-redundant, and if its edge weights are all
identical, it is |E|-redundant.

(a) Given a weighted graph G = (V,E) with weight function c and e = {v, w} ∈ E, we say that we
contract e when we perform the following operations:

(i) Replace v and w by a single vertex vw in V , i.e., V ′ ← V − {v, w} ∪ {vw}.
1I.e., for all e 6= e′ ∈ E, w(e) 6= w(e′).
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(ii) Replace any edge {v, x} or {w, x} by an edge {vw, x} in E, i.e.,

E′ ← E − {{v, x} | x ∈ V } − {{w, x} | x ∈ V } ∪ {{vw, x} | {v, x} ∈ E ∨ {w, x} ∈ E}.

(iii) Set the weight of the new edges to the weight of the original edges, taking the minimum of
the two weights if two edges are merged, i.e.

c′({x, y}) = c({x, y}) x, y /∈ {v, w}
c′({vw, x}) = c({v, x}) {v, x} ∈ E, {w, x} /∈ E

c′({vw, x}) = c({w, x}) {v, x} /∈ E, {w, x} ∈ E

c′({vw, x}) = min(c({v, x}), c({w, x})) {v, x} ∈ E, {w, x} ∈ E.

For all G = (V,E) and e ∈ E, we denote by Ge the graph obtained by contracting e in G. Explain
why if T is an MST of G and e ∈ T , then Te must be an MST of Ge.

(b) Let k > 0. Show that for all k-redundant G = (V,E) and e 6= e′ ∈ E with w(e) = w(e′), then Ge

is k′-redundant for some k′ ≤ k − 1.

(c) Show that if G is connected and k-redundant, it has at most 2k distinct MSTs.

Hint: By induction over k, using (a) and (b).

(d) Show that for all large enough n, there exists a graph G such that G is n-redundant and has at least
2

n
2 distinct MSTs.

Hint: First assume that n = 3k for some k. Consider graphs of the following form, where all unmarked
edges have weight 0. When n = 3k + 1 or n = 3k + 2, you can add one or two edges with cost 0 at
either end.
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